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The purpose of this paper was to investigate the use of limited sets of Gaussian functions as bases 
to calculate dissociation and activation energies. Gaussian functions have the principal advantage 
that they lead to integrals that can be performed analytically, even when explicit correlation terms 
are introduced. 

Calculations were performed on H 2 and linear H 3 using a restricted is-type Gaussian basis, and 
direct correlation factors were introduced into the wave function in both cases. The best result for 
the dissociation energy of H 2 was 105.1kcal/mole. However, the activation energy of the 
hydrogen atom-hydrogen molecule exchange reaction was calculated to be 15.8 kcal/mole. 

Die Anwendungsmtiglichkeit von Basiss~itzen einer beschr~inkten Zahl yon GauBfunktionen zur 
Berechnung von Dissoziations- und Aktivierungsenergien wird untersucht. Der Hauptvorteil bei der 
Verwendung von GauBfunktionen besteht darin, dab sie auf Integrale fiihren, die analytisch aus- 
gewertet werden kiSnnen, sogar im Falle, dab explizite Korrelationsanteile in den Funktionen ent- 
halten sind. 

Fiir H 2 und lineares H 3 wurde eine eingeschr[inkte GauBfunktionenbasis vom ls-Typ unter 
EinschluB expliziter Korrelationsanteile verwendet. Das beste Ergebnis fiir die Dissoziationsenergie 
des H 2 betriigt 105,1 kcal/mol. Dagegen ergibt sich fiir die Aktivierungsenergie der Austauschreaktion 
Wasserstoffatom-Wasserstoffmolektil ein Wert yon 15,8 kcal/mol. 

1. Introduction and General Account of Calculations 

The calculat ions in this paper  were instigated by the invest igat ion of Reeves 
[1], who suggested that  it was not  necessary to achieve high absolute accuracy 
in calculat ions in order to estimate energy differences successfully. Reeves' 
results were extended in this research by using more  elaborate  wave funct ions 
for H2 and  carrying out  corresponding calculat ions for H 3. In  this way the 
validity of this suggestion could be assessed for the calculat ion of both  dissoci- 
a t ion energies and  act ivat ion energies at least for small  chemical systems. A set 
of ls-like a tomic funct ions was used as a basis in all calculations. 

The wave funct ions for the H 2 or H 3 system were constructed using the 
following al ternatives:  

1. The F o r m  of Basis 
a) One  or two is- type Gauss ians  per a tomic 1s-orbital. 
b) Spherical or elliptical space functions. 

2. The F o r m  of the Complete  Wavefunct ion.  
a) Molecular  orbi tal  or conf igurat ion in teract ion treatment .  
b) Inclus ion of explicit corre la t ion terms or uncorre la ted function. 
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Additional constraints appear in the calculations but these are unimportant 
relative to the above classification. The first calculations employed a basis of 
single ls-type spherical Gaussians on each nuclear centre. Both molecular orbital 
and limited configuration interaction wave functions were tested and for each 
type of function explicit correlation was included in further calculations. 

An additional set of calculations using spherical Gaussians was carried out, 
the atomic Is orbitals being approximated by a double rather than a single 
Gaussian basis. Only configuration interaction wave functions were investigated 
in this and subsequent calculations. Calculations on H3 were continued using 
elliptical Gaussian functions. 

At each stage in the calculation sequence, increased accuracy was achieved. 
The dissociation energy of H2 was approximated closely. However, the method 
of using a limited set of Gaussians was not successful for H a ; at least not in terms 
of the computational effort required. The reasons for this failure are probably 
complicated and their discussion is deferred until Section 5. 

2. The Hamiltonian and Approximations 

All calculations were carried out using the Schr6dinger spin-free Hamiltonian: 

H = H e + V e e + V , , ,  

where He, Vee, and t ~  are respectively the one-electron, two-electron and nuclear 
repulsion terms. The operators are given in atomic units. 

The one-electron Hamiltonian H e is given by: 

Zj  , 
H ~ = - � 8 9  ] �9 

The electron coordinates are {ri} and the stationary nuclear coordinates are 
{A)} with corresponding charge Z~. Zj = 1 for all systems considered here. 

The two-electron Hamiltonian V** is given by: 

V~e= ~ ]r i-r j l  "~x . 
i>j  

The equation was solved in the Born-Oppenheimer approximation in which 
the electronic and nuclear wavefunctions are regarded as independent; then the 
separable internuclear potential terms is: 

V,,, = Z IA~ - A)l-1 Z ,Z~.  
i>j  

Although the equations were solved in the Born-Oppenheimer approximation, 
no investigation of the validity of this approximation was carried out for the 
dynamic system H3. 

The trial wavefunctions obeyed neither the nuclear cusp condition nor the 
interelectron cusp condition. Basically the main object of the work was to 
examine the extent to which the use of very limited sets of Gaussian functions, 
which give a poor representation of the behaviour of the wave function near the 
nuclei and produce poor absolute energies, may be satisfactory for obtaining 
energy differences. 
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For all the calculations performed here the energy changes were deduced 
for changes which did not alter the number of electrons or the number of nuclei. 
Cancelling of errors is therefore possible. The absence of the inter-electronic 
cusp condition is of smaller importance. 

Although it would have been very interesting to include both nuclear and 
electronic cusp conditions the improved wavefunctions would have required 
much longer computations. 

3. Types of Wavefunetion Used 

As indicated in the introduction the types of wavefunction investigated in 
this paper can be classified firstly according to basis and secondly according to 
the type of the total space wavefunction. The algebraic form of the correlation 
function is discussed in the section on bases since the space and correlation 
functions have similar structure. The way in which the correlation terms are 
included in the overall wavefunction is discussed in the second section on the 
form of the total wavefunction. 

3.1. Types of Atomic and Gaussian Basis and the Form of the Correlation Functions 

3.1.1. Space Basis Functions 

The spherical Gaussian functions can be written: 

Gs(aA) -- exp( - a ( r -  A) 2) 

where a is the exponent and A the coordinates of the function-centre. The tilde 
indicates a vector. The evaluation of the integrals arising from a basis such as 
this were first discussed by Boys [2], and summarised, together with an account 
of the evaluation of the numerical term, by Shavitt [-3]. 

The integrals for correlated terms of the spherical functions were discussed 
by Boys [-4]. Additional techniques for the evaluation of these integrals are given 
in a paper to be published later. 

The space part of the elliptical Gaussians can be written: 

Ge(aA ) = exp(-  ~ ax(x - Ax) 2) 
XyZ 

where {a} are the exponents and {A} the function centres. 
The matrix formulation of the elliptical integrals was first given by Singer [-5]. 

However, the forms used here are slightly modified to give an overall wave- 
function comparable with that obtained using Boys' integrals. The differences 
required in the integral formulae are indicated in a paper to be published later, 
together with a method for the factored matrix forms of the integrals for linear 
systems. 

Atomic ls-type functions {Z} were formed from the Gaussian functions by 
linear combinations: 

Zi = ~ b(u)G(u) 
J 
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where the indices are function labels. (ij) is a contracted double index. The 
relation between atomic and Gaussian sets can be written in matrix notation 
but many of the matrix elements are zero so this is inconvenient. 

Use of molecular orbital wave functions required the transformation of the 
atomic basis {)~} to a molecular basis {q~}. This transformation can be written: 

(r 

For  H2, C is the unnormalised orthogonal matrix 

E: :1 
For  H3, C is the unnormalised orthogonal matrix 

- -  0 . 

0 

2 is an adjustable parameter. The antibonding orbital does not occur in the 
g round  state and for this reason its coefficient vector is set to zero. 

All correlated integrals have the same dimension as the coupled electron 
function-space and require a double index per electron. Thus the two-electron 
integrals required a four-dimensional supermatrix transformation and the three- 
electron integrals required a six-dimensional supermatrix transformation. All 
matrices were held and transformed in a coded vector. Considerable effort was 
expended on the problem of labelling the unique Gaussian integrals in vectors 
in order that they could be recovered, summed and transformed if necessary. 

3.1.2. Correlation Functions 

The general form of the two-electron correlation function used with both 
elliptical and spherical space functions is given by: 

G(rij ) = exp( - d(rij) 2) 
where the indices refer to electron labels. 

Thus the symmetry of the correlation function is hyperspherical. This parti- 
cular form of two-electron function weights the least probable configurations 
and therefore the contribution due to these configurations must be subtracted 
from the uncorrelated structure. 

The three-electron correlation functions can be built from component two- 
electron functions in two distinct ways: either a symmetrical sum or product of 
the two-electron functions can be formed. 

For  the sum function: cs k= 

where e ( = / j  etc.) is the index for all distinct unordered pairs of the indices i, 
j and k. 
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For the product function: 

After a preliminary investigation for H3, G~j k was chosen as the more effective 
correlation function. There are good reasons for thinking that a simple re- 
stricted correlation function should have this form. The sum and product func- 
tions distinguish different structures, the sum function correlating all electron 
pairs more effectively. 

3.2. Structure of the Total Wavefunction 

The overall structure of the H 2 and H3 wave functions was very simple; 
conventional uncorrelated molecular orbital or configuration interaction wave- 
functions were used and combined with correlation terms to produce correlated 
functions. The configuration interaction functions incorporated all possible 
linearly independent Slater determinants that could be formed from the atomic 
(not Gaussian) basis {Z}- Since the correlation functions are always symmetric 
and the space wavefunction are determinants, the overall wavefunction is anti- 
symmetric. 

Correlation destroys the orthogonality properties of the overlap matrix. 
Thus it is necessary to solve an additional set of secular equations to diagonalise 
the overlap matrix, in order that both the overlap and Hamiltonian matrices 
should be simultaneously diagonal. 

3.2.1. Space Part of the Wavefunctions 

3.2.1.1. Molecular Orbital Wavefunctions 

For Hz the wavefunction is written: 

7~motH2) = Ilqh(1) a(1) ~01(2) B(2)It 
where qh is the lowest lying (symmetrical) molecular orbital, corresponding to 
row 1 of the matrix C, of Section 3.1.1. 

For H 3 the wavefunction is written: 

t/Jmo(H3) =- 11~o~(1) ~(1) q~2(2) c~(2) (p~(3)/~(3)11 

where {q~} is the molecular basis, corresponding to rows 1 and 2 of C, the 
molecular coefficient matrix. 

The Slater determinants are written conventionally as the sequence of 
diagonal elements between double bars. 

3.2.1.2. Configuration Interaction Wavefunctions 
The Hz configuration interaction wavefunction is written as: 

~ei(H2) = Z Ca IIz,(1) c~(1) Z,(2)/~(2)11 
a 

2 Theoret. chim. Acta (Berl.) Vol. 28 
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where the sum is over the contracted double index ~ corresponding to all i,j 
pairs that generate distinct Slater determinants. For  H 2 there are four such 
linearly independent determinants. The basis {q~} may, of course, be used instead 
of the basis {Z} in the configuration interaction function. 

The H 3 configuration interaction wavefunction can be written: 

~o~(H3) = Y, C~ Ilx,(1) 0r zj(2) ,8(2) Zk(3) ~(3)1 [ 
r 

where k ~ i for {Zi : i = 1, 2, 3}. A given sequence of indices i,j, k codes a unique ~. 
There are then nine linearly independent Slater determinants. 

For  both species the configuration interaction functions may be more briefly 
written as: 

N 

~T/ci = 2 C~Ao: 

where N = 4 for H 2 and N = 9 for Ha. 

3.2.2. Introduction of the Correlation Terms and Correlated Wavefunctions 

As mentioned in Section 3.1.2, the correlation factor weights improbable 
structures preferentially. Thus the structures must be subtracted from the un- 
correlated determinant (mo) or determinants (ci). 

The correlated molecular orbital wavefunction may be written for both 
H 2 and Ha as: 

2 

I[/mo = Z CiAi 
i=1 

where 
A 1 = Tmo (for the appropriate species) 

A 2 = G T m o .  

G is the correlation function, for H 2 o r  H 3. If C 1 is positive then C2 is negative 
because G(ru) is larger the smaller is r u. 

The form of correlated configuration interaction wavefunction closely re- 
sembles that of the correlated molecular orbital functions: 

N 

~oi = Y~ (CiAi + Ci+NGAi). 
i=1 

Again {Cz+N} are negative as they are the coefficients of correlated deter- 
minants. Contracting the notation: 

2N 

% = y ,  c,A,, 
i=1 

Ai+ N = G A  i f o r i = l ( 1 ) N .  

N = 4 for H2 and N = 9 for H3, giving respectively 8 and 18 determinants 
for the complete configuration interaction correlated wavefunction for H2 
and H 3. 

The precise types of calculation carried out are indicated in the next section 
where the particular constraints on the individual calculations are also listed. 
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4. Results for Calculations for H 2 and Linear H a 

4.1. Reeves' Results for the Hydrogen Atom (Table 1) 

Reeves' results [1] for the hydrogen atom are given in Table 1 in order to 
indicate the scale of absolute accuracy of the calculations reported in this paper. 
Only when three or more Gaussians are used does the hydrogen atom energy 
error (1.88 kcal/mole) become comparable with the exchange reaction activation 
energy (approximately 10 kcal/mole). 

In the notation of Section 3.1.1 the hydrogen atom wave function can be 
written: 

~I~(H) = ~ biG(ai, 0). 
i 

Table 1. Summary of Reeves' results for hydrogen atom 

Size of Exponents Linear Energy 
Gaussian a multipliers a.u. 
basis b 

Energy error 

a.u. kcal/mole 

1 0.2829 0.6515 -0.4244 0.0756 47.5 

2 0.2015 0.1760 -0.4858 0.014 8.91 
1.3320 0.2425 

3 0.1433 0.1034 -0.4970 0.003 1.88 
0.6577 0.2164 
4.2392 0.1575 

Exact - -  --  - 0.5000 

4.2. Results and Discussion of Present Calculations o n  H 2 and Linear H a 

4.2.1. Tables of Results 

This section refers to three tables of results: Table 2.1 which lists the data 
for all calculations performed on H E and Ha; Table 2.2 which gives the dissoci- 
ation energies calculated from the H z results of Table 2.1; and Table 2.3 which 
gives the activation energies calculated from the H 2 and H a results of Table 2.1, 
and the H results in TaMe 1. 

The calculations in Table 2.1 are ordered, where possible, in pairs of cor- 
responding H E and H a calculations. Calculations 1-7 were made with a basis 
of"single-Gaussian" ls atomic orbitals. Calculations 8-11 use "double-Gaussian" 
ls atomic orbitals. In calculations 12 and 13 an elliptical double Gaussian basis 
was used, there being no corresponding calculations for H 2. 

4.2.1.1. Notation for All Tables 

The first column of all three tables numbers the calculations and to permit 
easy cross-reference these numbers correspond in all tables. The second Column 
of Tables 2.2 and 2.3 and the third column of Table 2.1 code the type of 

2* 
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Table 2.1. All calculated results for H 2 and H 3 

Calc. System Type Energy Nuclear  Orbital  
No. code of a.u. centres exponents  

calc. A' a 

Orbital  Linear Correlat ion 
centres multipliers exponent  
A b d 

1 H 2 M S U 1  -0 .9808  0 3 . 7 0 ( - 1 )  a 0 
1.56 3.70 ( -  1) 1.56 

2 H 3 M S U 1  -1 .3844  - 1 . 8 9  3 . 3 7 ( - 1 )  - 1 . 8 9  
0 3.37 ( -  1) 0 
1.89 3.37 ( -  1) 1.89 

3 H 2 MSR 1 -0 .9986  0 4.10 ( -  1) 0 
1.57 4 . 1 0 ( - 1 )  1.57 

4 H 3 MSR1 -1 .4156  - 1 . 8 4  3 . 1 2 ( - 1 )  - 1 . 8 4  
0 5.26 ( -  1) 0 
1.84 3.12 ( -  1) 1.84 

5 H z CSU 1 -0 .9975  0 3.72 ( - 1) 
1.59 3.72 ( -  1) 

6 H 2 CSR 1 - 1.0081 0 4.10 ( -  1) 0 
1.59 4.10 ( -  1) 1.59 

7 H 3 CSR 1 - 1.4285 - 1.83 3.12 ( -  1) - 1.83 
0 5.28 ( -  1) 0 
1.83 3.12 ( -  1) 1.83 

8 H z C S U 2  - 1.1221 0 2.58 ( -  1) 
1.71 

1.45 2.58 ( -  1) 
1.71 

9 H 3 C S U 2  -1 .5767  - 1 . 8 8  2 . 2 1 ( - 1 )  - 1 . 8 5  
1.44 - 1.83 

0 3.09 ( -  1) 0 
1.74 0 

1.88 2.21 ( -  1) 1.85 
1.44 1.83 

10 H 2 CSR2 - 1.1390 0 2.68 ( -  1) 
1.65 

11 H 3 

12 H 3 

1.44 

CSR2 - 1.5997 - 1.81 

1.81 

C E U 2  -1 .5779  - 1 . 8 5  

m 

n 

m 

m 

m 

4.83 ( -  2) 2.04 ( -  1) - -  
5.92 ( -  1) 3.38 ( -  1) 

1.41 2 . 0 4 ( - 1 )  
1.40 3.38 ( -  1) 

2.68 ( - 1) 1.34 1.76 ( - 1) 
1.65 1.34 3.38 ( -  1) 

2.36 ( -  1) - 1.72 1 
1.53 - 1 . 7 1  1.32 

3.80 ( -  1) 0 1 
2.13 0 1.47 

2.36 ( - 1) 1.72 1 
1.53 1.71 1.32 

2 . 1 9 ( - 1 )  0 1 
2.33 ( - 1) - 1.83 

1.47 0 1.32 
1.30 - 1.83 

3 . 0 8 ( -  1) 0 1 
3.40 ( - 1) 0 

1.74 0 1.47 
1.75 0 

* b  

9 . 3 7 ( - 2 )  1 . 7 6 ( - 1 )  3 . 6 8 ( - 1 )  
9 . 3 9 ( - 2 )  3 . 3 8 ( - 1 )  

m 

1.98 ( - 2 )  - -  
1.57 

1.03 ( -  1) 

3.80 ( - 1) 

1.03 ( -  1) 

3.97 ( -  1) 

1 
1.32 

1 
1.47 

1 
1.32 
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Calc. System Type Energy Nuclear Orbital Orbital Linear Correlation 
No.  code of a.u. centres exponents centres multipliers exponent 

calc. A ' a A b d 

i2  H 3 C E U 2  ~ 1.5779 1.85 2.19 ( -  1) 0 1 
2.33 ( -  1) 1.83 

1.47 0 1.32 
1.30 1.83 

13 H 3 C E R  2 - 1.6021 - 1.79 2.36 ( -  1) 0 * * 

2.36 ( - 1) - 1.70 

1.58 0 * 

1.27 - 1.67 

0 4 . 1 0 ( - 1 )  0 * 
3.80 ( -  1) 0 

2.30 0 * 

2.13 0 

1.79 2.36 ( - 1) 0 * 
2.36 ( -  1) 1.70 

1.58 0 * 
1.27 1.67 

" The bracketed numbers are powers of 10. 

b The asterisk indicates that the data are unavailable, although in all cases the values are not critical. 

calculation carried out according to the following scheme: 

first letter ~M molecular orbital wavefunction 
[C configuration interaction wavefunction, 

S E spherical Gaussian basis 
second letter elliptical Gaussian basis, 

third letter ~R explicit correlation terms included 
[u no explicit correlation terms included, 

digit {12 one ls aaussian per atomic is orbital 
two ls Gaussians per atomic is orbital. 

4.2.1.2. Details and Notes for Table 2.1 
Column 5 contains the nuclear centre coordinates. As each nuclear centre is 

associated with one ls atomic function for single ls Gaussians there is one data 
set corresponding to each nuclear centre. For double-Gaussian atomic orbitals 
there are two data sets for each nuclear centre. For elliptical Gaussians each 
Gaussian function is specified by independent axial (z) and radial (x or y) ex- 
ponents, and each pair is associated with the corresponding Gaussian orbital 

centre. The exponents are written in the column order (x). An asterisk in the 
\ - - /  

table indicates that the data are not available. However, in all cases this is not 
critical. 
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The details of the different calculations, as identified by the numbers in the 
first column of Table 2.1, are the following: 

1. Nuclear and corresponding orbital centre are equal. 
2. Nuclear and corresponding orbital centres are equal; all Gaussian ex- 

ponents are the same. 2=  1.489 (see Section 3.1.1) 2 is the only adjustable 
molecular orbital coefficient matrix element in the symmetric linear configu- 
ration for H3. 

3. Nuclear and corresponding orbital centres are the same. 
4. Nuclear and corresponding orbital centres are the same. 2 = 1.721. 
5. No corresponding calculation performed for H3. Polarised (floated) 

orbital centres were used. 
6. All data are identical with data for calculation 3. Correlation coefficient 

d optimised. 
7. Single unoptimised calculation with data from calculation 4. 
8. Fully minimised wavefunction. 
9. Fully minimised wavefunction. 

10. Fully minimised wavefunction. 
11. Apart from d all parameters were optimised. 
12. Orbital exponents, centres and nuclear centres optimised. 
13. Orbital exponents, centres and nuclear centres optimised. 
The calculations 10-13 all illustrated the great computational difficulty of 

finding a minimum in a non-linear parameter space. All other minimisations 
were carried out by Ransil's method [6]. 

4.2.2. Discussion of Results for All Tables 2 

The purpose of the initial calculations 1-8 was to investigate the accuracy 
of energy differences calculated using the minimum possible ls-type basis. 

For the hydrogen molecule it appears that the calculated dissociation energy 
is not subject to large errors resulting from the absence of cusps in the wave- 
functions. (Energy differences in Table 2.2 are, of course, always calculated using 
the corresponding basis for the hydrogen atom.) The dissociation energy calcu- 
lated with type 1 function (one Gaussian function per atom) is 83.2, while that 
using a single Slater orbital per atom is 80.0 kcal/mole. J. P. Chesick et al. [-7] 
using two Gaussian functions per centre obtained 83.4. Also in the series using 
configuration interaction calculation 5 and 8 gave 93.3 and 94.5 kcal/mole, 
while that using single Slater functions gave 92.2 kcal/mole. In both sets the 
variation is small despite the fact that the Slater functions have a cusp whereas 
the Gaussian functions do not. The addition of the correlation term improves 
the calculated dissociation energy by 10.6 kcal/mole for the calculations using a 
molecular orbital treatment with a single Gaussian function per atom (calc. 3), 
but when two Gaussians per atom are used the improvement is only 
6.6 kcal/mole (calc. 6). When a correlation term is added to the configuration 
interaction treatment with two Gaussians per centre, the improvement is 
11.0 kcal/mole (calc. 10). It is possible that the last calculation allows particularly 
effectively for electron correlation because it is included both through configu- 
ration interaction and in the correlation term as well. This would provide 
additional flexibility. 
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Calc.  T y p e  A b s o l u t e  E r r o r  in D i s s o c i a t i o n  

No .  code  of  e n e r g y  a b s o l u t e  ene rgy  

calc.  a.u.  e n e r g y  

E r r o r  in 

d i s soc i a t i on  

ene rgy  

1 M S U  1 - 0 . 9 8 0 8  0.1938 A 0.1328 A 0.0418 A 
121.6 K 83.4 K 26.1 K 

3 M S R  1 - 0 .9986 0 .1860 A 0.1498 A 0.0246 A 
116.8 K 94.0 K 15.5 K 

5 C S U  1 - 0 . 9 9 7 5  0.1771 A 0.1487 A 0.0259 A 
111.2 K 93.3 K 16.1 K 

6 C S R  1 - 1.0081 0.1665 A 0.1593 A 0.0153 A 
104.5 K 100.0 K 9.5 K 

8 C S U 2  - 1.1221 0.0525 A 0.1605 A 0.0141 A 
32.5 K 94.5 K 15.4 K 

10 C S R 2  - 1.1390 0 .0356 A 0.1674 A 0.0072 A 
22.9 K 105.1 K 4 . 4 K  

Sla ter  m o  80.0 K 29.5 K 

Sla ter  ci 92.2 K 17.3 K 

E x a c t  - -  - 1.1746 - -  0 .1746 A - -  
109.5 K 

A = a t o m i c  units .  - -  K = kca l /mole .  

T a b l e  2.3. C o m p l e t e  ene rgy  resul ts  for  H3 ,  i nc lud ing  ac t i va t i on  ene rgy  

Calc.  T y p e  E n e r g y  E n e r g y  o f  A c t i v a t i o n  
N o .  c o d e  o f  a.u.  c o m p a r a b l e  ene rgy  

calc.  H2  + H a.u.  

A c t i v a t i o n  
ene rgy  
k c a l / m o l e  

2 (1) a M S U  1 - 1.3844 - 1.4052 0.0208 13.1 

4 (3) M S R  1 - 1.4156 - 1.4230 0 .0074 4.6 
7 (6) C S R  1 - 1.4285 - 1.4325 0 .0040 2.5 
9 (8) C S U 2  - 1.5767 - 1.6079 0 .0312 19.6 

11 (10) C S R  2 - 1.5997 - 1.6248 0.0251 15.8 

12 C E U 2  - 1.5779 - -  - -  
13 C E R 2  - 1.6021 - -  - -  - -  

a The  n u m b e r s  in b r a c k e t s  refer  to  the  c o r r e s p o n d i n g  ca l cu l a t i ons  for  H 2. 

The calculations of the activation energy for the reaction of hydrogen atoms 
with hydrogen molecules are listed in Table 2.3. Activation energies were obtained 
using the corresponding H, Hz, and H 3 calculations. The absolute accuracy for 
H3 increases in the series 2, 4, 7, 9, and 11, as would be expected. However, the 
calculated activation energy fluctuates in the same series showing that the 
cancellation of core errors arising from the absence of cusps at the nuclei is not 
adequate relative to the small activation energy that is being derived. It is 
possible that this results from the rather special situation of the central proton 
in H3. 

The first calculations indicate that, for these, the absolute error is so large in 
comparison with the quantity being calculated that the space wavefunction is 
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inadequate to allow an accurate predication of the relatively smatl chemical 
energy. A further difference between the results for Ha and H3 is demonstrated by 
the fact that on going from calculation 2 to 4, the introduction of a correlation 
term actually results in a poorer value for the activation energy. The erratic 
behaviour of the results for calculations 7, 9, and 11 also demonstrates that the 
total errors are too large with these functions when interest lies in the calculation 
of such a small energy. 

The use of double Gaussian Is atomic orbitals greatly reduced the effect of 
the poor space part of the wavefunction near the nuclei. Thus the result of 
calculation 9 (19kcal/mole) corresponds well with the result of Bowen and 
Linnett [8] (22.8 kcal/mole) where comparable exponent variation of a 1s-type 
basis was aUowed. The last activation energy calculated from 11 (15.8 kcal/mole) 
is reasonably satisfactory, though disappointing in terms of the computational 
effort required. 

The purpose of the elliptical Gaussian calculations 12 and 13 was to include 
polarisation effects more successfully than by merely "floating" spherical 
Gaussians from their associated nuclear centres. However, the.results indicate 
that the incorporation of elliptical symmetry effects a negligible improvement 
in the H3 energy, at least with the limited basis used. For this reason no cor- 
responding calculations with H2 were attempted. 

5. The Computations and Computational Times 

The number of Gaussian integrals to be evaluated for a correlated function 
is of the order of (N) 2n, where N is the size of the basis set and n is the number of 
electrons. As a result an energy computation for H3 is about two hundred times 
more time-consuming than for Hz (for the double-Gaussian basis). By far the 
greatest portion of time was used in integral evaluation. For the H3 calculation 
using spherical Gaussian functions roughly 52500 integrals had to be evaluated. 
For H2 there were only 990 for the corresponding calculation. 

All calculations were performed using the Titan Computer in Cambridge 
(add-time about 5 micro-seconds). A spherical double Gaussian calculation 
with correlation required about 8 minutes for H3, and the corresponding el- 
liptical one about 20. The similar H2 calculations using spherical Gaussian 
functions took less than 1 minute. 

6. General Discussion 

There are two kinds of problem involved in the quantum mechanical compu- 
tation of activation energies. The first is the difficulty of choosing an adequate 
wavefunction and of deriving the potential energy surface and barrier height 
from it. However, in addition, there are the theoretical difficulties such as the 
assumption of the Born-Oppenheimer approximation, the supposition that the 
process is adiabatic and also uncertainty regarding tunnelling through the 
barrier. The last might be particularly important in the present case because 
protons only are involved. It is not, however, the purpose of this paper to discuss 
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problems of this second kind because they are common to all computations for 
this system. Moreover, it does seem probable that a good estimate of the 
activation energy is about 9 kcal/mole. 

The idea behind the present calculations was to examine whether the intro- 
duction of specific allowance for electron correlation could make it possible to 
calculate energy changes with reasonable accuracy, even when the basis function 
was so simple that the absolute value for the energy was bound to be very in- 
accurate. There was some hope that this might be successful because the dis- 
sociation energy of the hydrogen molecule is, as has been pointed out earlier, 
calculated to be between 80 and 83.5 kcal/mole when a simple molecular orbital 
treatment is used, whether the basis consists of a single Gaussian, double 
Gaussian or single Slater orbital on each atom. The error in the absolute energy 
changes considerably from one of these calculations to another but the calculated 
energy change does not. The same is true for the configuration interaction 
calculations. 

The absolute energy errors discussed below are shown in Tab. 2.2. For the 
dissociation energy of hydrogen, calculation 3 (MSR 1)showed that, although 
the total error was 117, the error in the energy change (dissociation energy) was 
only 15.5 kcal/mole. For calculation 6 (CSR1), the corresponding figures were 
104 and 9.5; and for calculation 10 (CSR2) 22.9 and 4.4kcal/mole. So, for this 
quantity, the error in the energy change is very much less than the absolute error, 
though for calculation 10 the ratio of the two errors (4.4/22.9) is rather greater 
than the ratio of the dissociation energy to the total energy (110/740). Never- 
theless, the results do give some satisfaction because electron correlation is in- 
volved in the molecule but not in the separated atoms. 

The results for the activation energy are not so satisfactory. Calculation 4 
(MSR 1) gives 4.6 kcal/mole, calculation 7 (CSR 1) 2.5 and calculation 11 (CSR2) 
15.8. Comparison of calculations 2 and 4, and of 9 and 11, shows that, in both 
cases, the calculated activation energy is lowered on introducing a correlation 
term, as would be expected. The actual errors in the energy of activation are no 
bigger than those for the dissociation energy of H2, but they are comparable to 
the energy being calculated. 

Therefore, the conclusion of the present work is that this procedure may be 
useful for the calculation of large energy changes but cannot be expected to be 
particularly useful for small energy changes. In such cases the absolute accuracy 
needs to be greater. 

S.J.F. wishes to express his gratitude to Pembroke College, Cambridge, for the financial as- 
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